Learning

JavaScript

PRAVEEN NAIR

What is JavaScript?

Used to program the behavior of web pages
JavaScript was invented by Brendan Eich in 1995.

JavaScript code is inserted between <script> and </script> tags.
Javascript was developed by Netscape

JavaScript vs VBScript (Microsoft)

Javascript supports all browser, vbscript supports IE

Originally Sun Microsystem and now Oracle

Basic Structure

let a=10;

let b=20;

letc =a + b;
console.log(c);

Variables

let

const (constant, can’t be changed)

Var -

var is function scoped and let is block scoped. Variable declared by let cannot
be redeclared

Variables are case-sensitive, try camelCase, titlecase, with dash

Data Types (Primitive /Value type)

let n=2;

let s = “Hello World”; //double or single quote
let flag = true; //true or false - boolean

let name; //undefined

let cost=null;

Type conversion

let value = true;
alert(typeof value); // Boolean
value = String(value);

let numStr="34";
num = Number(numStr); // becomes a number 123

alert(Boolean(num))

/* Values that are intuitively “empty”, like 0, an empty string, null,
undefined, and NaN, become false. Other values become true.*/

Comments // and /*

//let name='John’,
let age=20
/* document.write(name)

console.log(name)

*/

Printing using backtick

let n=2;
let s = " Price of an apple is ${n} ;
console.log(s)

Also called template literals....try multiline

Math Operators

Addition + (also concatenates string)
Subtraction -

Multiplication *
Division /
Remainder %
Exponentiation **

Comparison Operators

Operator Description Comparing Returns
== equal to X == FALSE
X == TRUE
x=="5" TRUE
=== equal value and equal type X === TRUE
x ==="5" FALSE
I= not equal x1=8 TRUE
== not equal value or not equal type Xl== FALSE
X l=="5" TRUE
x!==8 TRUE
> greater than X>8 FALSE
< less than x<8 TRUE
>= greater than or equal to x>=8 FALSE
<= less than or equal to x<=8 TRUE

Logical Operators

Logical NOT (!)
Logical AND (&&)

Logical OR (] |)

Precedence of AND && is higher than OR | |

Assignments

A=4

A=3 + (b=4 + ©6)

A=B=C=4+5 //chaining assignments
A++ // same as A=A+1

A--// same as A=A-1

Conditional branching: if

letn=7
if (N%2==0){
console.log("Even Number")

elsef
console.log("Odd Number")

Greater number
Greatest number
Vowel

Ternary/conditional operator ?’

let isEligible = (age > 18) ? true : false;

Try multiple condition
conditionl

? true_expressionl

: condition2
? true_expression2
. else_expression?2

Nullish coalescing operator 27

let count = O

let displayCount = count | | 10; // Output: 10 (because
O is falsy)

let correctCount = count ?? 10; // Output: O (because
O is not null or undefined)

Switch statement

let price = 40;

switch (price) {

case 30:
alert('Too Cheap’);
break;

case 40: _
alert('Perfect Price’);
break;

case b50:
alert('Too Costly’);
break;

default: _
alert("l don't know the price");

while loop

while (condition) {

For loop

for (leti=0;i<3;i++){
alert(i);

}

Try break and continue

JavaScript Regular Function

function showMsg() {
alert(‘Hello World!");

}

showMsg();

(IIFE)immediately invoked
function expression

(function functionName() {
console.log("Hello World");

10);

Passing arguments

function sum(a, b) {
c=a+tb;
alert(c);

}
sum(1, 2);

Returning Values

function sum(a, b) {
return a + b;

}

let result = sum(1, 2);
alert(result); // 3

Function Expressions

let sayHello = function() {
alert("Hello World");

J

sayHello();

Arrow functions

let result = (a, b) => {
letc=a+b
return c

I

let result = function(a, b) {
letc=a+b
return c;

I

alert(result(3, 2));

Callback functions

function ask(question, yes, no) {
if (confirm(question)) yes()
else no();

}

function a() {
alert("You agreed.");

function b() {
alert("You canceled.");

msg = “Do you agree?”
ask(msg, a, b);

Functions (...args) vs arguments

function sum(){
let sum=0
for (let i=0;i<arguments.length;i++){
sum = sum + argumentsi]

}glert(sum)
sum(2,3,4,5)

function sum(...args) {
let sum = 0;
for (leti=0;i < args.length; i++) {
sum =sum + argsJi];
console.log(sum);

}
sum(2, 3, 4, 5);

Data Types (Reference Type)

Objects
Arrays

Functions

Objects — Keyed Collections

let student = {
name: "Smitha",
age: 30
;
console.log(student.name) // student[“house address”|
console.log(student.age)

Console.log(student)

Objects — add / delete properties

Student.iseligible=true

Delete student.iseligible

Console.log(student)
const arr = Object.entries(student);
const keyArr = Object.keys(student);
const valueArr = Object.values(student);

console.log(arr,keyArr,valueArr)

Objects — lookup

marks = {

“John”:30,
“Joe”:60

}

name = “John”

Console.log(Marks[name])

Arrays

|et arr —_ [IIMangOII, Ilorangell’ llCherryll];
for (leti=0; i< arr.length; i++) {

console.log(arrli]);

Array Methods — foreach, map

let fruits = ["apple", "mango”, "orange"];
fruits.forEach((value,index,arr) => {

console.log(value,index,arr);

D;

let fruits = ["apple", "mango", "orange"];
fruits.map((value, index, arr) => {

console.log(value, index, arr);

D;

Array Methods — filter and find

let score = [34, 12, 67, 89, 30];

let result = score.filter((v) => {

return v > 40;

D;

console.log(result);
let empnum =[1003, 1005, 1006, 1034];
let result = empnum.find((v) => {
return v == 1003;
};

console.log(result);

Arrays — reduce method

let marks = [40,60,80,40]
let sum = marks.reduce((total,value)=>{

return total + value

})

console.log(sum)

Module Import/Export

calc.mjs
function add(x,y){
return x+y

}
export default add

import add from "./calc.mjs"
let sum = add(4,5)
console.log(sum)

Module Import/Export - multiple

calc.mjs
function add(x,y){
return x+y

function subtract(x,y){
return x-y

export {add, subtract}

import {add,subtract} from "./calc.js”
let sum = add(4,5)
console.log(sum)
let difference = subtract(8,3)
console.log(difference)

Var vs let keyword

var a = 20 //function scope
if (10>4) {
var a=10

)

console.log(a)

let b = 20 //function score + block scope
if (10>4) {

let b=10
}

console.log(b)

Spread Operator (...)

let marks = {};

marks = {...marks,English:95}
console.log(marks)

marks = {...marks,Maths:90}
console.log(marks)

let students = ["John","Cathy","Mike"]
students = [...students,"Amy"]
console.log(students)

students = [...students,"Alice"]
console.log(students)

Error Handling — reference error

try{

console.log(a)
}
catch(err){
console.log(err)
console.log(err.message)

console.log(err.name)

}

JavaScript Object Notation (JSON)

{

"name": "Alice",

"age": 25,

"isStudent": false,

"skills": ["HTML", "CSS", "JavaScript"],

"address": {

"city": "Chennai",
"pincode": 600001
}
}

JSON.stringify

student = {name:"john",age:20,pass:true}
student = JSON.stringify(student)
console.log(student)

expected output:

{"name":"john","age":20,"pass":true}

JSON.parse

let student = '{"name":"john", "age":20}'
console.log(student.name)
let obj = JSON.parse(student)

console.log(obj.name)

Why promise is needed

//asynchronous : occurring at the same time
const f1 = () => {
setTimeout(() => {

return 5;
}, 5000);

const f2 = (X) =>é
console.log(x + 6);

¥

let n1 = f1();
f2(n1);

Use callback to solve the issue

const f1 = (fnc) => {

setTimeout(() => {
fnc(D);

1, 5000);

I

const f2 = (x) => {
console.log(x + 6);

¥
f1(f2);

Use promise and .then

const f1 = () =>{ _ _
return new Promise((resolve, reject) => {
setTimeout(() => { _
resolve(D); //use resolve instead of return
)}, 5000);

¥
const f2 = (X) =>é
.console.log(x + 0)

X
f1().then((a) => f2(a));

Async/await

const f1 = () =>{
return new Promise((resolve, reject) => {
// resolve(d);
reject("Something went wrong");

const f2 = () =>{
console.log("Function 2");

const f3 = async () => {
try {
let n1 = await f1();
f2(n1);
} catch (err) {
console.log(err);

f3()};

Fetch API

fetch("https://jsonplaceholder.typicode.com/users")
.then((res) => res.json())
then((data) => {
data.map((value) => {

console.log(value.name);

1
;

Closure (access to outer variable)

function main() {
let b = 1;
function sub() {
return b;

}

return sub;

)

let f1 = main();
console.log(f1());
console.log(f1()):

Target Event

<p onclick="alert(event.target.innerHTML)">This is a dummy text</p>

<input type="text" onchange="alert(event.target.value)" />

Accessing element’s value

<p id="p2">This is a paragraph</p>
<input type="text" id="t1" placeholder="Enter a value">

<input type="button" onclick="myfunc()" value="Submit">
<script>
function myfunc(){
alert(document.getElementByld('t1').value)

}

</script>

- PRAVEEN NAIR

