
Learning
JavaScript
PRAVEEN NAIR

What is JavaScript?
Used to program the behavior of web pages
JavaScript was invented by Brendan Eich in 1995.

JavaScript code is inserted between <script> and </script> tags.

Javascript was developed by Netscape

JavaScript vs VBScript (Microsoft)

Javascript supports all browser, vbscript supports IE

Originally Sun Microsystem and now Oracle

Basic Structure
let a=10;
let b=20;
let c = a + b;
console.log(c);

Variables

let

const (constant, can’t be changed)

Var –

var is function scoped and let is block scoped. Variable declared by let cannot
be redeclared

Variables are case-sensitive, try camelCase, titlecase, with dash

Data Types (Primitive/Value type)
1. let n=2;

2. let s = “Hello World”; //double or single quote

3. let flag = true; //true or false - boolean

4. let name; //undefined

5. let cost=null;

Type conversion
let value = true;
alert(typeof value); // Boolean
value = String(value);

let numStr="34";
num = Number(numStr); // becomes a number 123

alert(Boolean(num))

/* Values that are intuitively “empty”, like 0, an empty string, null,
undefined, and NaN, become false. Other values become true.*/

Comments // and /*

//let name='John';

let age=20

/* document.write(name)

console.log(name)

*/

Printing using backtick
let n=2;

let s = `Price of an apple is ${n}`;

console.log(s)

……………………………..

Also called template literals….try multiline

Math Operators

Addition + (also concatenates string)

Subtraction -

Multiplication *

Division /

Remainder %

Exponentiation **

Comparison Operators
ReturnsComparingDescriptionOperator
FALSEx == 8equal to==
TRUEx == 5
TRUEx == "5"
TRUEx === 5equal value and equal type===
FALSEx === "5"
TRUEx != 8not equal!=

FALSEx !== 5not equal value or not equal type!==
TRUEx !== "5"
TRUEx !== 8
FALSEx > 8greater than>
TRUEx < 8less than<
FALSEx >= 8greater than or equal to>=
TRUEx <= 8less than or equal to<=

Logical Operators

Logical NOT (!)

Logical AND (&&)

Logical OR (||)

Precedence of AND && is higher than OR ||

Assignments

A=4

A=3 + (b=4 + 6)

A=B=C=4+5 //chaining assignments

A++ // same as A=A+1

A- - // same as A=A-1

Conditional branching: if

let n = 7
if (n%2==0){

console.log("Even Number")
}
else{

console.log("Odd Number")
}

……………………………………………..

Greater number
Greatest number
Vowel

Ternary/conditional operator ‘?’

let isEligible = (age > 18) ? true : false;
Try multiple condition
condition1

? true_expression1
: condition2

? true_expression2
: else_expression2

Nullish coalescing operator '??'

let count = 0;

let displayCount = count || 10; // Output: 10 (because
0 is falsy)

let correctCount = count ?? 10; // Output: 0 (because
0 is not null or undefined)

Switch statement
let price = 40;

switch (price) {
case 30:

alert('Too Cheap’);
break;

case 40:
alert('Perfect Price’);
break;

case 50:
alert('Too Costly’);
break;

default:
alert("I don't know the price");

}

while loop

while (condition) {

...

}

For loop

for (let i = 0; i < 3; i++) {

alert(i);

}

Try break and continue

JavaScript Regular Function

function showMsg() {

alert(‘Hello World!');

}

showMsg();

(IIFE)immediately invoked
function expression

(function functionName() {

console.log("Hello World");

})();

Passing arguments

function sum(a, b) {

c = a + b;

alert(c);

}

sum(1, 2);

Returning Values

function sum(a, b) {

return a + b;

}

let result = sum(1, 2);

alert(result); // 3

Function Expressions

let sayHello = function() {

alert("Hello World");

};

sayHello();

Arrow functions
let result = (a, b) => {

let c = a + b
return c

};

let result = function(a, b) {
let c = a + b
return c;

};

alert(result(3, 2));

Callback functions
function ask(question, yes, no) {

if (confirm(question)) yes()

else no();

}

function a() {
alert("You agreed.");

}

function b() {
alert("You canceled.");

}
msg = “Do you agree?”

ask(msg, a, b);

Functions (…args) vs arguments

function sum(){
let sum=0
for (let i=0;i<arguments.length;i++){
sum = sum + arguments[i]

}
alert(sum)

}
sum(2,3,4,5)

………………………………………….
function sum(...args) {

let sum = 0;
for (let i = 0; i < args.length; i++) {
sum = sum + args[i];

}
console.log(sum);

}
sum(2, 3, 4, 5);

Data Types (Reference Type)
1. Objects

2. Arrays

3. Functions

Objects – Keyed Collections

let student = {

name: "Smitha",

age: 30

};

console.log(student.name) // student[“house address”]

console.log(student.age)

Console.log(student)

Objects – add / delete properties

Student.iseligible=true

Delete student.iseligible

Console.log(student)

const arr = Object.entries(student);

const keyArr = Object.keys(student);

const valueArr = Object.values(student);

console.log(arr,keyArr,valueArr)

Objects – lookup

marks = {

“John”:30,
“Joe”:60

}

name = “John”

Console.log(Marks[name])

Arrays
let arr = ["Mango", "Orange", "Cherry"];

for (let i = 0; i < arr.length; i++) {

console.log(arr[i]);

}
……………………………………………………….

Array Methods – foreach, map
let fruits = ["apple", "mango", "orange"];

fruits.forEach((value,index,arr) => {

console.log(value,index,arr);

});
let fruits = ["apple", "mango", "orange"];

fruits.map((value, index, arr) => {

console.log(value, index, arr);

});

Array Methods – filter and find
let score = [34, 12, 67, 89, 30];

let result = score.filter((v) => {

return v > 40;

});

console.log(result);
………………………………………..
let empnum = [1003, 1005, 1006, 1034];

let result = empnum.find((v) => {

return v == 1003;

});

console.log(result);

Arrays – reduce method
let marks = [40,60,80,40]

let sum = marks.reduce((total,value)=>{

return total + value

})

console.log(sum)

Module Import/Export

calc.mjs
function add(x,y){

return x+y
}
export default add
……………………………..
import add from "./calc.mjs"

let sum = add(4,5)

console.log(sum)

Module Import/Export - multiple
calc.mjs
function add(x,y){

return x+y
}
function subtract(x,y){

return x-y
}

export {add, subtract}
……………………………..
import {add,subtract} from "./calc.js“

let sum = add(4,5)
console.log(sum)
let difference = subtract(8,3)
console.log(difference)

Var vs let keyword
var a = 20 //function scope
if (10>4) {

var a=10
}

console.log(a)
……………………………………..

let b = 20 //function score + block scope
if (10>4) {

let b=10
}
console.log(b)

Spread Operator (…)

let marks = {};
marks = {...marks,English:95}
console.log(marks)
marks = {...marks,Maths:90}
console.log(marks)

let students = ["John","Cathy","Mike"]
students = [...students,"Amy"]
console.log(students)
students = [...students,"Alice"]
console.log(students)

Error Handling – reference error
try{

console.log(a)

}

catch(err){

console.log(err)

console.log(err.message)

console.log(err.name)

}

JavaScript Object Notation (JSON)
{

"name": "Alice",

"age": 25,

"isStudent": false,

"skills": ["HTML", "CSS", "JavaScript"],

"address": {

"city": "Chennai",

"pincode": 600001

}

}

JSON.stringify

student = {name:"john",age:20,pass:true}

student = JSON.stringify(student)

console.log(student)

expected output:

{"name":"john","age":20,"pass":true}

JSON.parse

let student = '{"name":"john", "age":20}'

console.log(student.name)

let obj = JSON.parse(student)

console.log(obj.name)

Why promise is needed
//asynchronous : occurring at the same time

const f1 = () => {
setTimeout(() => {
return 5;

}, 5000);
};

const f2 = (x) => {
console.log(x + 6);

};

let n1 = f1();
f2(n1);

Use callback to solve the issue

const f1 = (fnc) => {
setTimeout(() => {
fnc(5);

}, 5000);
};

const f2 = (x) => {
console.log(x + 6);

};

f1(f2);

Use promise and .then
const f1 = () => {

return new Promise((resolve, reject) => {
setTimeout(() => {
resolve(5); //use resolve instead of return

}, 5000);
});

};

const f2 = (x) => {
console.log(x + 6)

};

f1().then((a) => f2(a));

Async/await
const f1 = () => {

return new Promise((resolve, reject) => {
// resolve(5);
reject("Something went wrong");

});
};
const f2 = () => {

console.log("Function 2");
};
const f3 = async () => {

try {
let n1 = await f1();
f2(n1);

} catch (err) {
console.log(err);

}
};

f3()

Fetch API

fetch("https://jsonplaceholder.typicode.com/users")

.then((res) => res.json())

.then((data) => {

data.map((value) => {

console.log(value.name);

});

});

Closure (access to outer variable)

function main() {
let b = 1;
function sub() {
return b;

}
return sub;

}
let f1 = main();
console.log(f1());
console.log(f1());

Target Event

<p onclick="alert(event.target.innerHTML)">This is a dummy text</p>

<input type="text" onchange="alert(event.target.value)" />

Accessing element’s value

<p id="p2">This is a paragraph</p>
<input type="text" id="t1" placeholder="Enter a value">

<input type="button" onclick="myfunc()" value="Submit">
<script>
function myfunc(){
alert(document.getElementById('t1').value)
}

</script>

Thank You

- PRAVEEN NAIR

