Learning

& MongoDB

PRAVEEN NAIR

Introduction to MongoDB

MongoDB is a document database.

MongoDB is a non-relational, non-tabular database.

Relational data is stored differently.

Instead of having multiple tables all the related data are stored together.
In MongoDB, tables are called collections.

MongoDB can be installed locally or in cloud called MongoDB Atlas

Mongosh or Compass can be used to query MongoDB

Advantages of MongoDB

Flexibility: MongoDB is schema-less, meaning you don't need to design a
schema for the database.

Scalability: MongoDB can be horizontally scaled by distributing data across
multiple servers, a process called sharding.

Performance: MongoDB is fast at inserting or updating large numbers of
records. It also supports geospatial efficiently.

MongoDB Installation

https://www.mongodb.com/try/download/community

Choose MSI

Connect to local mongodb

Install Mongosh (https://www.mongodb.com/try/download/shell)

Type mongosh -version

Type mongosh to get prompt

show dbs

use myproj to create or access new db

db.dropDatabase(“dbname”) to delete database (or db.dropDatabase())
show collections

db.createCollection(“employees")
db.createCollection(“employees*,{capped:true,size:100,max:100) //max 100 employees, size max 100 bytes. Delets oldest document
db.emploees.drop() to delete collection
db.restaurant.renameCollection('restaurants’) //rename collection

Case sensitive

Inserting Data

db.employees.insertOne({
name: "John Smith",
email: "john@gmail.com”,
department: "IT",
salary: 1456,
location: ["FL", "OH"],
date: Date()

})
db.employees.find()

Inserting Multiple Data

db.employees.insertMany([{
name: "Mike Joseph",
email: "mike@gmail.com",
department: "IT",
salary: 2456,
location: ["FL", "TX"],
date: Date()

{ name: "Cathy G",
email: "cathy@gmail.com",
department: "IT",
salary: 3456,
location: ["AZ", "TX"],
date: Date()

)

Data type

String

Integers

Double (decimal)
Boolean

Date() (new Date())
Null

Arrays []

Nested documents {}

Find Data

returns first 20, then type it for more documents

db.employees.find().skip(2)

db.employees.find

db.users.find(). sort({name 1}) //sorting -1 for reverse
db.users.find().limit(1) //returns 1 document sort by object id
db.users.find(). sort([[name 1D.limit(3

db.employees.find({department: "IT" %
db.users.find({name:"Cathy",pass:"1234"}) //two condition

db. emplo¥ees find({}, {_id: O, salary: 1, date: 1}) //cannot give O
db.users.tind({},{_id: false name: true}g)//cannot give false

db.employees. fmd({} |d 0, salary: O, date: 1} //either use O or 1, can’t use both
db.users. fmd({address Clty' '‘Gwenborough’ })-//query nested documents
db.users. fmd({address geo.lat:-37.3159’ %

db.employees.find({'location":'TX’}) //where location : [‘FL, TX’]

db.users. md().gount(e
db.employees.find({},{"dept":"$department",email:1,salary:1}) //dept is alias

db.employees. f|nd§ //returns first 20, then type it for more documents

Update Document

db.users.find({'address.city":'Gwenborough’}) //query nested documents
db.users.find({address.geo.lat:'-37.3159’})
db.employees.find({'location":'TX’}) //where location : [‘FL,'TX’]

Query Operators

db.employees.find({department:{$eq:'HR’}})
db.users.find({email:{$ne:'cathy@gmail.com'}})
db.employees.find({salary:{$gt:3000}})
db.employees.find({salary:{$gte:3000}})
db.employees.find({salary:{$gte:3000,$1t:5000}})
db.employees.find({salary:{$gt:1000},department:{$eq:'HR'}})
db.employees.find({salary:{$gt:2000},department:{$in:['HR",'IT']}})
db.employees.find({salary:{$gt:2000},department:{$nin:['HR','IT'}})
db.employees.find({$or:[{salary:{$gt:2000}},{department:{$eq:'HR'}1})
db.employees.find({$and:[{salary:{$gt:2000}},{department:{$eq:'HR'}}]})
db.employees.find({$nor:[{salary:{$gt:2000}},{department:{$eq:'HR"}}]}) //like and but both should be false
db.employees.find({department:{$not:{$eq:'HR'}}})

db.users.find({email 1:{$exists:false}})

Update Document

db.employees.updateOne({email:'cathy@gmail.com'},{$set:{department:'HR'}})
db.employees.updateOneS

{email: 'ria@gmail.com”
${Set:
name: "Ria K",

email: "ria@gmail.com",
department: "HR",
salary: 5000,

location: ["FL", "LA"],
date: Date()

}

{’upsert: true }

db.employees.updateMany({}, { $set: { date: Date() } })

Delete Document

db.employees.deleteOne({email:'ria@gmail.com'})

db.employees.deleteMany({email:'ria@gmail.com'})

Query Operators - 2

db.employees.find(
{[department:{$in:["HR","Admin"]}}

db.employees.find(
{department:{$nin:["HR","Admin"]}}

Update Operators(fields)

db.employees.updateOne({email:'cathy@gmail.com'},{$set:{email:'cathy@hotm
ail.com'}})

db.employees.updateMany({},{$set:{points:0}}) - new field

(
db.employees.updateMany({},{$inc:{points:70}})
db.employees.updateMany({},{$rename:{points:'score'}})
(

db.employees.updateMany({},{$unset:{score:"}}) //deletes the field

Summary - CRUD

db.users.find({filter},{projection})

db.users.insertOne({document})
db.users.insertMany([{document},{document}]
db.users.deleteMany({filter})
db.users.updateMany({filter},{$set:{flag:false}})
db.users.updateMany({filter},{$unset:{flag:""}})
db.users.updateMany({filter},{$inc:{score:20}}) //increment by 20
db.users.updateMany({filter},{$rename:{flag:"indicator"}})
db.users.find({$and:[{},{}])

Update Operators (arrays)

db.employees.updateOne({email:'cathy@hotmail.com'},{$addToSet:{location:'F
L'}}) //duplicates won’t be added, use push instead

db.employees.updateOne({email:'cathy@hotmail.com'},{$pop:{location:1}}) -try
-1

db.employees.updateMany({email:'cathy@hotmail.com'},{$pull:{points:{$gt:1}}}
)

db.employees.updateMany({email:'cathy@hotmail.com'},{$push:{points:5}})

Indexes (improves search but
slows insert, update)

db.users.find({email:'cathy@gmail.com'}).explain("executionStats")
totalDocsExamined: 13,

db.users.createlndex({email:1}) //ascending
totalDocsExamined: 3,

db.users.getindexes()
db.users.createlndex({'email:1},{unique:true})

db.users.droplndex("email_1")

Misc — skip and limit

db.employees.find().skip(2)
db.employees.find().skip(2).limit(1)

Used for pagination

Aggregation pipeline

db.employees.aggregate([
{pipelinel or stage 1},
{pipeline2 or stage 2},

1)

Aggregation - $match

db.employees.aggregate(][

{
$match: {} //stage 1
I
{
$group: { _id: "$department”, total: { $sum: "$salary" } } //stage 2
b
$sort: { “department™: -1}

Aggregation - $match

db.employees.aggregate([

{
$match: { salary: { $gt: 1000}} //state 1
b
{
$group: { _id: "$department", total: { $sum: "$salary" } } //stage 2
}
1)

Aggregation - $group

An aggregation pipeline return results for groups of documents. For example, return
the total, average, maximum, and minimum values.

db.employees.aggregate([
{

$group: {
_id: "$department”,
Total: { $sum: "$salary" },
Hightest: { $max: "$salary" },
Lowest: { $min: "$salary" },
Average: { $avg: "$salary" },

Aggregation - $limit

db.employees.aggregate([
{ $group: { _id: "$department", Total: { $sum: "$salary" } } },
{ $limit: 1},

1);

Aggregation - $project

db.employees.aggregate([

{
$project: {
"name": 1,
"email": 1,
"salary": 1
}
2

§$Iimit: 2
1)

$project — remove field

db.employees.aggregate([{ $project: { _id: O, name: 0} }]);

$project — rename & add calc

db.employees.aggregate([
{
$project: {
empname: "$name”,
email: 1,
salary: 1,
AnnualSalary: { $multiply: [12, "$salary"] },

Aggregation - $sort

db.employees.aggregate([
$sort: { "name": -1}
{ .
$project: {
"name": 1,
"email": 1,
"salary":1

J
L

}{$Iimit: 5
1)

Aggregation - $addFields, $cond

{ $cond: [<boolean-expression>, <true-case>, <false-case>] }

db.employees.aggregate([

$project: {
_id: O,
name: 1,
salary: 1,
grade: { $cond: [{ $gte: ["$salary", 2000] }, "Grade A", "Grade B"] },

Aggregation - $addFields -$cond-if

{ $cond: { if: <boolean-expression>, then: <true-case>, else: <false-case>}}

db.employees.aggregate(|
$project: {
id: O

name: 1,
salary: 1,
grade: {
$'?‘O?g: { ["$sal 2000] }
if: te: ["$salary”,)
then:gGrade A",
else: "Grade B",

Aggregation - $lookup prep

db.createCollection("orders")

db.orders.insertOne({'empid':Objectld('65fc6dd2198f1b870853d26¢e'),'date"
Date(),'orderValue':5000})

Aggregation - $lookup — orders to
emp

db.orders.aggregate(][

$lookup: {
from: "employees",
localField: "empid",
foreignField: "_id",
as: "employee_details",
b
}7
{
$limit: 1

Aggregation - $lookup — emp to
orders

db.employees.aggregate([
{
$lookup: {
from: "orders",
localField: "_id",
foreignField: "empid",

as: "Orders",

Aggregation - $out (creates
ratingbydep collection)

db.employees.aggregate([

{
$project: {
name: 1,
department: 1,
rating:{$convert:{input:"$rating",to:"int"}}

b
)

{’$group: { _id: "$department", avg: { $avg: "$rating" } } },
{$out:"ratingByDep"}
1);

Views

db.createView(
"activeUsers",
"users”,
[
{ $match: { isActive: true } },
]
)

db.activeUsers.find()
db.activeUsers.drop()

Backup and Restore - Tool

Download MSI version using below link:
https://www.mongodb.com/try/download/database-tools

Click on the downloaded file and install

Setup environment variables to add path
C:\Program Files\MongoDB\Tools\100\bin

Backup Steps

//backup of a particular database
mongodump -d mydb -o d:/bck //d means data

//backup of a particular collection
mongodump -d mydb -c employees -o d:/bck //c means collection

//backup of all the databases
mongodump -o d:/bck //0 means output

Restore Steps

//to restore a particular database
mongorestore -d mydb d./bck/mydb

/ /1o restore a particular collection
mongorestore -d mydb -c employees d:\bck\mydb\employees.bson

//to restore all the databases
mongorestore --dir d:\bck\

//creates a new database and then restores
mongorestore -d mydbnew -¢c employees d:\bck\mydb\employees.bson

//creates a new collection and then restores
mongorestore -d mydbnew -¢c employees d:\bck\mydb\employees.bson

MongoDB — Regex

db.employees.find({name:{$regex:’Cathy’}}) //consists Cathy
db.employees.find({name:{$regex:“cathy",$options:"i"}}) // case insensitive
db.employees.find({name:{$regex:"*C"}) // starts with C
db.employees.find({name:{$regex:“y$"}}) //ends with y

Mongodb cluster

Replica Set

Replica of data is created

Sharded cluster

Parts of data is stored in different machine,..used in very large database

Mongodb Replication - 1

Create a folder mongo-replica and sub folders datal data2 and data3
Open command prompt and start running servers on separate tabs

mongod -replSet rs1 -logpath "d:\mongo-replica\datal\1.log" --dbpath
"d:\mongo-replica\datal" --port 27018

mongod -replSet rs1 -logpath "d:\mongo-replica\data2\2.log" --dbpath
"d:\mongo-replica\data2" --port 27019

mongod -replSet rs1 -logpath "d:\mongo-replica\data3\3.log" --dbpath
"d:\mongo-replica\data3" --port 27020

Mongodb Replication - 2

Follow these instructions to configure replica set:
mongosh - -port 27018

rs.initiate({_id:"rs1",members:[{_id:0,host:"127.0.0.1:27018"},{_id:1,host:"127.
0.0.1:27019"},{_id:2,host:"127.0.0.1:27020"}]})

rs.config() //to check the config

rs.status()

Mongodb Replication - 3

Use mongosh command with the following connection string and the primary
server will automatically get connected:

mongosh

"mongodb://localhost:27018,localhost:27019,localhost:27020/?replicaSet=r
Slll

show dbs

use mytestdb
db.createCollection("customers")
db.customers.insertOne({name:"John"})

Mongodb Replication - 4

Check secondary servers. Check both the servers if data is replicated

mongosh --port 270xx

Secondary will start, can read but cannot write
db.getMongo().setReadPref("secondary") //or rs.secondaryOKk()
use mytestdb

db.customers.find() - will work now

mongosh --port 270xx

Secondary will start, can read but cannot write
db.getMongo().setReadPref("secondary") //or rs.secondaryOKk()
use mytestdb

db.customers.find() - will work now

Mongodb Replication - 5

Shutdown primary server and the primary will be automatically changed to one of the other two servers

Go to primary 270xx
Use admin
db.shutdownServer()

Now go to secondary servers 270xx or 270xx, and type show dbs...you would notice that one of the servers will
be changed to primary automatically

Open new tab and start previous primary 270xx again

mongod -replSet rs1 -logpath d:\mongo-replica\datal\1l.log -dbpath d:\mongo-replica\datal\ -port 270xx
Open another tab and run mongosh. You will observe that it is now a secondary server.
mongosh --port 270xx

Sharding

shard: a small piece or part

Sharding is a Horizontal Scaling method that distributes data across multiple
machines compared to vertical scaling where capacity of single server is
increased to the maximum.

Sharding - 1

Create folder dbshards and then create sub folders: conf, rconf, s1, sir, s2,
S2r

Start Config servers on separate tabs of command prompt

mongod --configsvr --port 27018 --replSet cf -dbpath d:\dbshards\conf
mongod --configsvr —-port 27019 --replSet cf --dbpath d:\dbshards\rconf
Open new tab and Initiate replica set for config servers

mongosh --port 27018

rs.initiate({_id:'cf',members:[{_id:0,host:'localhost:27018",{_id:1,host:'localhos
t:27019)})

Sharding - 2

Start Shard1 servers on separate tabs of command prompt
mongod --shardsvr —-port 27020 --replSet rs1 --dbpath d:\dbshards\s1
mongod --shardsvr —-port 27021 -replSet rs1 --dbpath d:\dbshards\s1r

Open new tab and Initiate replica set for shardl servers

mongosh --port 27020

rs.initiate({_id:'rs1',members:[{_id:0,host:'localhost:27020",{_id:1,host:'localh
ost:270211]})

Sharding - 3

Start Shard2 servers on separate tabs of command prompt
mongod --shardsvr —-port 27022 --replSet rs2 --dbpath d:\dbshards\s2
mongod --shardsvr —-port 27023 --replSet rs2 --dbpath d:\dbshards\s2r

Open new tab and Initiate replica set for shard2 servers

mongosh --port 27022

rs.initiate({_id:'rs2',members:[{_id:0,host:'localhost:27022",{_id:1,host:'localh
ost:27023'1]})

Sharding - 4

Start Mongo Routing Service on separate tab of command prompt
mongos --configdb cf/localhost:27018,localhost:27019 --port 27050

Sharding - 5

Now connect to 27050 and add shards

mongosh --port 27050
sh.addShard("rs1/localhost:27020,localhost:27021")
sh.addShard("rs2/localhost:27022,localhost:27023")

sh.status()

use mydatabase
sh.enableSharding("mydatabase")
sh.shardCollection("mydatabase.customers”, { _id: 1})

sh.status()
sh.getShardedDataDistribution() //run this after executing below nodejs scripts

Sharding - Insert dummy data

import { MongoClient } from "mongodb";
const uri = "mongodb://127.0.0.1:27050/“
const client = new MongoClient(uri);
asyn{c function insertTestData() {
try
await client.con nect();
const db = client.db("mydatabase");
const collection = db.collection("customers");
// const res = await collection.countDocuments()
// console.log(res)
const bulk =[1;
for (leti=0;1<90000; i++) {
bulk.push({
userld: j, N
name: ~User${i}”, R
email: ~user${i}@test.com”,
createdAt: new Date(),

)
const result = await collection.insertMany(bulk); 4
console.log(" Inserted ${result.insertedCount} documents.");
} catch (err) {
console.error("Error inserting data:", err);
} finally [I
await client.close();

insertTestData();

Sharding - Verify Shard servers

mongosh --port 27020

show dbs)

//if mydatabase exists then run below two commands
use mydatabase

db.customers.countDocuments()

mongosh —-port 27022

show dbs

use mydatabase
db.customers.countDocuments()

Note:Keep running the nodejs script and you will observe that mydatabase appears on both the servers.

Open mongo routing service and check the distribution

mongosh --port 27050

sh.status() -

sh.getShardedDataDistribution() _ _ _

Over a period of time orphanDocument will become O. It gets created if documents gets created in wrong shard. Observe
numOwnedDocuments on both the shards

To verify secondary servers run following command:
db.getMongo().setReadPref("secondary”) //or rs.secondaryOk(

User Management - 1

use admin

db.createUser({
user: "admin”,
pwd: "admin®”,
roles: [{ role: "root", db: "admin" }]

})

add following settings in mongod.conf available in program files / mongodb

security:
authorization: enabled

go to services and restart mongodb server

User Management - 2

mongosh will still connect but you can't run any command so try with following
options:

mongosh --username admin --authenticationDatabase admin //for prompt

mongosh --username admin --password admin --authenticationDatabase admin
//without prompt

connect using mongodb compass using following connection string
mongodb://admin:admin@localhost:27017/
mongodb://admin:admin@localhost:27017/?authSource=admin
mongodb://admin:admin@localhost:27017/mydb?authSource=admin

User Management - 3

use mydb

db.createUser({
user: "userl”,
pwd: "1234",
roles: [
{role: "read", db: "mydb" }

]
})

db.getUsers()

mongosh --username userl --authenticationDatabase mydb
db.dropUser("userl1")

- PRAVEEN NAIR

