
Learning

MongoDB
PRAVEEN NAIR

Introduction to MongoDB

MongoDB is a document database.

MongoDB is a non-relational, non-tabular database.

Relational data is stored differently.

Instead of having multiple tables all the related data are stored together.

In MongoDB, tables are called collections.

MongoDB can be installed locally or in cloud called MongoDB Atlas

Mongosh or Compass can be used to query MongoDB

Advantages of MongoDB

Flexibility: MongoDB is schema-less, meaning you don't need to design a
schema for the database.

Scalability: MongoDB can be horizontally scaled by distributing data across
multiple servers, a process called sharding.

Performance: MongoDB is fast at inserting or updating large numbers of
records. It also supports geospatial efficiently.

MongoDB Installation

https://www.mongodb.com/try/download/community

Choose MSI

Connect to local mongodb
Install Mongosh (https://www.mongodb.com/try/download/shell)

Type mongosh –version

Type mongosh to get prompt

show dbs

use myproj to create or access new db

db.dropDatabase(“dbname”) to delete database (or db.dropDatabase())

show collections

db.createCollection(“employees")

db.createCollection(“employees“,{capped:true,size:100,max:100) //max 100 employees, size max 100 bytes. Delets oldest document

db.emploees.drop() to delete collection

db.restaurant.renameCollection('restaurants’) //rename collection

Case sensitive

Inserting Data

db.employees.insertOne({
name: "John Smith",
email: "john@gmail.com",
department: "IT",
salary: 1456,
location: ["FL", "OH"],
date: Date()

})

db.employees.find()

Inserting Multiple Data
db.employees.insertMany([{

name: "Mike Joseph",
email: "mike@gmail.com",
department: "IT",
salary: 2456,
location: ["FL", "TX"],
date: Date()

},
{ name: "Cathy G",

email: "cathy@gmail.com",
department: "IT",
salary: 3456,
location: ["AZ", "TX"],
date: Date()

}])

Data type
String

Integers

Double (decimal)

Boolean

Date() (new Date())

Null

Arrays []

Nested documents {}

Find Data
returns first 20, then type it for more documents

db.employees.find() //returns first 20, then type it for more documents
db.employees.find().skip(2)
db.employees.findOne()
db.users.find().sort({name:1}) //sorting -1 for reverse
db.users.find().limit(1) //returns 1 document sort by object id
db.users.find().sort({name:1}).limit(3)
db.employees.find({department: "IT"})
db.users.find({name:"Cathy",pass:"1234"}) //two condition
db.employees.find({}, {_id: 0, salary: 1, date: 1}) //cannot give 0
db.users.find({},{_id:false,name:true}) //cannot give false
db.employees.find({}, {_id: 0, salary: 0, date: 1}) //either use 0 or 1, can’t use both
db.users.find({'address.city':'Gwenborough’}) //query nested documents
db.users.find({address.geo.lat:'-37.3159’})
db.employees.find({'location':'TX’}) //where location : [‘FL’,’TX’]
db.users.find().count()
db.employees.find({},{"dept":"$department",email:1,salary:1}) //dept is alias

Update Document

db.users.find({'address.city':'Gwenborough’}) //query nested documents
db.users.find({address.geo.lat:'-37.3159’})
db.employees.find({'location':'TX’}) //where location : [‘FL’,’TX’]

Query Operators
db.employees.find({department:{$eq:'HR’}})

db.users.find({email:{$ne:'cathy@gmail.com'}})

db.employees.find({salary:{$gt:3000}})

db.employees.find({salary:{$gte:3000}})

db.employees.find({salary:{$gte:3000,$lt:5000}})

db.employees.find({salary:{$gt:1000},department:{$eq:'HR'}})

db.employees.find({salary:{$gt:2000},department:{$in:['HR','IT']}})

db.employees.find({salary:{$gt:2000},department:{$nin:['HR','IT']}})

db.employees.find({$or:[{salary:{$gt:2000}},{department:{$eq:'HR'}}]})

db.employees.find({$and:[{salary:{$gt:2000}},{department:{$eq:'HR'}}]})

db.employees.find({$nor:[{salary:{$gt:2000}},{department:{$eq:'HR'}}]}) //like and but both should be false

db.employees.find({department:{$not:{$eq:'HR'}}})

db.users.find({email1:{$exists:false}})

Update Document
db.employees.updateOne({email:'cathy@gmail.com'},{$set:{department:'HR'}})

db.employees.updateOne(
{ email: "ria@gmail.com" },
{

$set:
{

name: "Ria K",
email: "ria@gmail.com",
department: "HR",
salary: 5000,
location: ["FL", "LA"],
date: Date()

}
},
{ upsert: true }

)

db.employees.updateMany({}, { $set: { date: Date() } })

Delete Document

db.employees.deleteOne({email:'ria@gmail.com'})

db.employees.deleteMany({email:'ria@gmail.com'})

Query Operators - 2

db.employees.find(

{department:{$in:["HR","Admin"]}}

)

db.employees.find(

{department:{$nin:["HR","Admin"]}}

)

Update Operators(fields)

db.employees.updateOne({email:'cathy@gmail.com'},{$set:{email:'cathy@hotm
ail.com'}})

db.employees.updateMany({},{$set:{points:0}}) -- new field

db.employees.updateMany({},{$inc:{points:70}})

db.employees.updateMany({},{$rename:{points:'score'}})

db.employees.updateMany({},{$unset:{score:""}}) //deletes the field

Summary - CRUD
db.users.find({filter},{projection})

db.users.insertOne({document})

db.users.insertMany([{document},{document}]

db.users.deleteMany({filter})

db.users.updateMany({filter},{$set:{flag:false}})

db.users.updateMany({filter},{$unset:{flag:""}})

db.users.updateMany({filter},{$inc:{score:20}}) //increment by 20

db.users.updateMany({filter},{$rename:{flag:"indicator"}})

db.users.find({$and:[{},{}])

Update Operators (arrays)

db.employees.updateOne({email:'cathy@hotmail.com'},{$addToSet:{location:'F
L’}}) //duplicates won’t be added, use push instead

db.employees.updateOne({email:'cathy@hotmail.com'},{$pop:{location:1}}) –try
-1

db.employees.updateMany({email:'cathy@hotmail.com'},{$pull:{points:{$gt:1}}}
)

db.employees.updateMany({email:'cathy@hotmail.com'},{$push:{points:5}})

Indexes (improves search but
slows insert, update)

db.users.find({email:'cathy@gmail.com'}).explain("executionStats")
totalDocsExamined: 13,

db.users.createIndex({email:1}) //ascending
totalDocsExamined: 3,

db.users.getIndexes()

db.users.createIndex({'email':1},{unique:true})

db.users.dropIndex("email_1")

Misc – skip and limit

db.employees.find().skip(2)

db.employees.find().skip(2).limit(1)

Used for pagination

Aggregation pipeline

db.employees.aggregate([

{pipeline1 or stage 1 },

{pipeline2 or stage 2},

])

Aggregation - $match
db.employees.aggregate([

{

$match: {} //stage 1

},

{

$group: { _id: "$department", total: { $sum: "$salary" } } //stage 2

},
{

$sort: { “department": -1 }
},

])

Aggregation - $match
db.employees.aggregate([

{

$match: { salary: { $gt: 1000 } } //state 1

},

{

$group: { _id: "$department", total: { $sum: "$salary" } } //stage 2

}

])

Aggregation - $group
An aggregation pipeline return results for groups of documents. For example, return
the total, average, maximum, and minimum values.

db.employees.aggregate([
{
$group: {

_id: "$department",
Total: { $sum: "$salary" },
Hightest: { $max: "$salary" },
Lowest: { $min: "$salary" },
Average: { $avg: "$salary" },

},
},

]);

Aggregation - $limit

db.employees.aggregate([

{ $group: { _id: "$department", Total: { $sum: "$salary" } } },

{ $limit: 1 },

]);

Aggregation - $project
db.employees.aggregate([

{
$project: {

"name": 1,
"email": 1,
"salary": 1

}
},

{
$limit: 2

}

])

$project – remove field

db.employees.aggregate([{ $project: { _id: 0, name: 0 } }]);

$project – rename & add calc
db.employees.aggregate([

{

$project: {

empname: "$name",

email: 1,

salary: 1,

AnnualSalary: { $multiply: [12, "$salary"] },

},

},

]);

Aggregation - $sort
db.employees.aggregate([

{
$sort: { "name": -1 }

},
{
$project: {

"name": 1,
"email": 1,
"salary":1

}
},
{
$limit: 5

}
])

Aggregation - $addFields, $cond
{ $cond: [<boolean-expression>, <true-case>, <false-case>] }
………………………………
db.employees.aggregate([

{
$project: {

_id: 0,
name: 1,
salary: 1,
grade: { $cond: [{ $gte: ["$salary", 2000] }, "Grade A", "Grade B"] },

},
},

]);

Aggregation - $addFields -$cond-if
{ $cond: { if: <boolean-expression>, then: <true-case>, else: <false-case> } }
………………………
db.employees.aggregate([
{

$project: {
_id: 0,
name: 1,
salary: 1,
grade: {
$cond: {

if: { $gte: ["$salary", 2000] },
then: "Grade A",
else: "Grade B",

},
},

},
},

]);

Aggregation - $lookup prep

db.createCollection("orders")

db.orders.insertOne({'empid':ObjectId('65fc6dd2198f1b870853d26e'),'date':
Date(),'orderValue':5000})

Aggregation - $lookup – orders to
emp
db.orders.aggregate([

{
$lookup: {

from: "employees",
localField: "empid",
foreignField: "_id",
as: "employee_details",

},
},
{
$limit: 1

}
])

Aggregation - $lookup – emp to
orders
db.employees.aggregate([

{

$lookup: {

from: "orders",

localField: "_id",

foreignField: "empid",

as: "Orders",

},

},

]);

Aggregation - $out (creates
ratingbydep collection)

db.employees.aggregate([
{

$project: {
name: 1,
department: 1,
rating:{$convert:{input:"$rating",to:"int"}}

},
},
{ $group: { _id: "$department", avg: { $avg: "$rating" } } },
{$out:"ratingByDep"}

]);

Views
db.createView(

"activeUsers",

"users",

[

{ $match: { isActive: true } },

]

)

db.activeUsers.find()

db.activeUsers.drop()

Backup and Restore - Tool

Download MSI version using below link:

Click on the downloaded file and install

Setup environment variables to add path

C:\Program Files\MongoDB\Tools\100\bin

https://www.mongodb.com/try/download/database-tools

Backup Steps
//backup of a particular database

mongodump -d mydb -o d:/bck //d means data

//backup of a particular collection

mongodump -d mydb -c employees -o d:/bck //c means collection

//backup of all the databases

mongodump -o d:/bck //o means output

Restore Steps
//to restore a particular database
mongorestore -d mydb d:/bck/mydb

//to restore a particular collection
mongorestore -d mydb -c employees d:\bck\mydb\employees.bson

//to restore all the databases
mongorestore --dir d:\bck\

//creates a new database and then restores
mongorestore -d mydbnew -c employees d:\bck\mydb\employees.bson

//creates a new collection and then restores
mongorestore -d mydbnew -c employees d:\bck\mydb\employees.bson

MongoDB – Regex

db.employees.find({name:{$regex:’Cathy’}}) //consists Cathy

db.employees.find({name:{$regex:“cathy",$options:"i"}}) // case insensitive

db.employees.find({name:{$regex:"^C"}}) // starts with C

db.employees.find({name:{$regex:“y$"}}) //ends with y

Mongodb cluster

Replica Set

Replica of data is created

Sharded cluster

Parts of data is stored in different machine,..used in very large database

Mongodb Replication - 1
Create a folder mongo-replica and sub folders data1 data2 and data3

Open command prompt and start running servers on separate tabs

mongod -replSet rs1 -logpath "d:\mongo-replica\data1\1.log" --dbpath
"d:\mongo-replica\data1" --port 27018

mongod -replSet rs1 -logpath "d:\mongo-replica\data2\2.log" --dbpath
"d:\mongo-replica\data2" --port 27019

mongod -replSet rs1 -logpath "d:\mongo-replica\data3\3.log" --dbpath
"d:\mongo-replica\data3" --port 27020

Mongodb Replication - 2
Follow these instructions to configure replica set:

mongosh - -port 27018

rs.initiate({_id:"rs1",members:[{_id:0,host:"127.0.0.1:27018"},{_id:1,host:"127.
0.0.1:27019"},{_id:2,host:"127.0.0.1:27020"}]})

rs.config() //to check the config

rs.status()

Mongodb Replication - 3
Use mongosh command with the following connection string and the primary
server will automatically get connected:

mongosh
"mongodb://localhost:27018,localhost:27019,localhost:27020/?replicaSet=r
s1"

show dbs

use mytestdb

db.createCollection("customers")

db.customers.insertOne({name:"John"})

Mongodb Replication - 4
Check secondary servers. Check both the servers if data is replicated

mongosh --port 270xx
Secondary will start, can read but cannot write
db.getMongo().setReadPref("secondary") //or rs.secondaryOk()
use mytestdb
db.customers.find() – will work now

mongosh --port 270xx
Secondary will start, can read but cannot write
db.getMongo().setReadPref("secondary") //or rs.secondaryOk()
use mytestdb
db.customers.find() – will work now

Mongodb Replication - 5
Shutdown primary server and the primary will be automatically changed to one of the other two servers

Go to primary 270xx
Use admin
db.shutdownServer()

Now go to secondary servers 270xx or 270xx, and type show dbs…you would notice that one of the servers will
be changed to primary automatically

Open new tab and start previous primary 270xx again

mongod -replSet rs1 -logpath d:\mongo-replica\data1\1.log --dbpath d:\mongo-replica\data1\ --port 270xx

Open another tab and run mongosh. You will observe that it is now a secondary server.

mongosh --port 270xx

Sharding
shard: a small piece or part

Sharding is a Horizontal Scaling method that distributes data across multiple
machines compared to vertical scaling where capacity of single server is
increased to the maximum.

Sharding - 1
Create folder dbshards and then create sub folders: conf, rconf, s1, s1r, s2,
s2r

Start Config servers on separate tabs of command prompt

mongod --configsvr --port 27018 --replSet cf --dbpath d:\dbshards\conf

mongod --configsvr --port 27019 --replSet cf --dbpath d:\dbshards\rconf

Open new tab and Initiate replica set for config servers

mongosh --port 27018

rs.initiate({_id:'cf',members:[{_id:0,host:'localhost:27018'},{_id:1,host:'localhos
t:27019'}]})

Sharding - 2
Start Shard1 servers on separate tabs of command prompt

mongod --shardsvr --port 27020 --replSet rs1 --dbpath d:\dbshards\s1

mongod --shardsvr --port 27021 --replSet rs1 --dbpath d:\dbshards\s1r

Open new tab and Initiate replica set for shard1 servers

mongosh --port 27020

rs.initiate({_id:'rs1',members:[{_id:0,host:'localhost:27020'},{_id:1,host:'localh
ost:27021'}]})

Sharding - 3
Start Shard2 servers on separate tabs of command prompt

mongod --shardsvr --port 27022 --replSet rs2 --dbpath d:\dbshards\s2

mongod --shardsvr --port 27023 --replSet rs2 --dbpath d:\dbshards\s2r

Open new tab and Initiate replica set for shard2 servers

mongosh --port 27022

rs.initiate({_id:'rs2',members:[{_id:0,host:'localhost:27022'},{_id:1,host:'localh
ost:27023'}]})

Sharding - 4
Start Mongo Routing Service on separate tab of command prompt

mongos --configdb cf/localhost:27018,localhost:27019 --port 27050

Sharding - 5
Now connect to 27050 and add shards

mongosh --port 27050

sh.addShard("rs1/localhost:27020,localhost:27021")

sh.addShard("rs2/localhost:27022,localhost:27023")

sh.status()

use mydatabase

sh.enableSharding("mydatabase")

sh.shardCollection("mydatabase.customers", { _id: 1 })

sh.status()

sh.getShardedDataDistribution() //run this after executing below nodejs scripts

Sharding - Insert dummy data
import { MongoClient } from "mongodb";
const uri = "mongodb://127.0.0.1:27050/“
const client = new MongoClient(uri);
async function insertTestData() {
try {

await client.connect();
const db = client.db("mydatabase");
const collection = db.collection("customers");
// const res = await collection.countDocuments()
// console.log(res)
const bulk = [];
for (let i = 0; i < 90000; i++) {
bulk.push({
userId: i,
name: `User${i}`,
email: `user${i}@test.com`,
createdAt: new Date(),

});
}
const result = await collection.insertMany(bulk);
console.log(`Inserted ${result.insertedCount} documents.`);

} catch (err) {
console.error("Error inserting data:", err);

} finally {
await client.close();

}
}
insertTestData();

Sharding - Verify Shard servers
mongosh --port 27020
show dbs
//if mydatabase exists then run below two commands
use mydatabase
db.customers.countDocuments()

mongosh --port 27022
show dbs
use mydatabase
db.customers.countDocuments()

Note:Keep running the nodejs script and you will observe that mydatabase appears on both the servers.

Open mongo routing service and check the distribution
mongosh --port 27050
sh.status()
sh.getShardedDataDistribution()
Over a period of time orphanDocument will become 0. It gets created if documents gets created in wrong shard. Observe
numOwnedDocuments on both the shards

To verify secondary servers run following command:
db.getMongo().setReadPref("secondary") //or rs.secondaryOk(

User Management - 1
use admin

db.createUser({
user: "admin",
pwd: "admin",
roles: [{ role: "root", db: "admin" }]

})

add following settings in mongod.conf available in program files / mongodb

security:
authorization: enabled

go to services and restart mongodb server

User Management - 2
mongosh will still connect but you can't run any command so try with following
options:

mongosh --username admin --authenticationDatabase admin //for prompt

mongosh --username admin --password admin --authenticationDatabase admin
//without prompt

connect using mongodb compass using following connection string

mongodb://admin:admin@localhost:27017/

mongodb://admin:admin@localhost:27017/?authSource=admin

mongodb://admin:admin@localhost:27017/mydb?authSource=admin

User Management - 3
use mydb

db.createUser({
user: "user1",
pwd: "1234",
roles: [
{ role: "read", db: "mydb" }

]
})

db.getUsers()

mongosh --username user1 --authenticationDatabase mydb

db.dropUser("user1")

Thank You

- PRAVEEN NAIR

